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Navier-Stokes Solutions for an Oscillating Double-Delta Wing

J. A. Ekaterinaris* and Lewis B. Schiff
NASA Ames Research Center, Moffett Field, California 94035

Steady-state and unsteady Navier-Stokes solutions of the vortical flow over a double-delta wing configuration,
consisting of a sharp leading-edge 76-deg sweep strake and a 40-deg sweep wing section are presented. The
governing equations are solved numerically with an upwind-biased, implicit, iterative, and factorized numerical
scheme. At fixed angles of incidence, the steady-state flow and the leeward-side vortex system resulting from
the strake and wing vortices are investigated for subsonic, high Reynolds number flows. The unsteady flowtield
development resulting from the large amplitude oscillatory motion of the wing around a mean angle of attack
of @ = 22.4 deg, with an amplitude of 6.8 deg, is also investigated. Lag in the appearance of vortex breakdown
caused by the pitch-up motion is found in accordance with the experiment. The computed unsteady solution is
compared with available unsteady flow measurements at several phase angles during the oscillation cycle.

Introduction

NVESTIGATION of the vortical flowfield over delta wings

at a high angle of attack is an active area of current the-
oretical and experimental research. The main feature of the
flow over a delta wing at an angle of attack is the leeward-
side vortex pattern resulting from the separation of the wind-
ward-side and leeward-side boundary layers from the wing
leading edge. The energetic character of the leeward-side
vortical flowfield provides nonlinear lift. This additional vor-
tical lift has been successfully utilized in modern aircraft. As
the angle of attack increases, the leeward-side leading-edge
vortices are strengthened, and the lift of the delta wing in-
creases until a critical angle of attack is reached where bursting
of the vortices occurs. Downstream of the burst point reversed
axial velocities are usually observed, and the breakdown is
followed by a turbulent wake. Breakdown has adverse effects
on the lift characteristics and may cause unsteady self-excited
oscillatory motion. Understanding the mechanisms that gen-
erate vortex breakdown, and the ability to predict its occur-

rence, is crucial in efforts to improve current aircraft design °

and performance in flight at high angle of attack.

Due to its importance to the aerodynamic behavior of the
delta wing, the phenomenon of vortex breakdown was studied
extensivcly both by experimental and theorctical investiga-
tions. Most of the early experimental work on vortex break-
down was done for axisymmetric swirling flows confined in
cylindrical tubes. For flows over delta wings, both bubble-
and spiral-type vortex breakdowns were observed, depending
on the angle of attack and the wing aspect ratio. The structure
of the vortical flowfield and the effect of vortex breakdown
over delta wings was the subject of several recent experi-
mental investigations.!® Various flow regimes, ranging from
the low-speed regime to the transonic regime, were investi-
gated. Different aspect ratio delta wings were examined, and
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bubble or spiral vortex breakdown was identified depending
on the angle of attack and the aspect ratio. The flow over
simple delta wings and double-delta wings was also studied
recently by numerical solution of the Navier-Stokes equa-
tions.” ' The results of these numerical investigations were
in good agreement with the experimental measurements, and
both bubble- and spiral-type breakdown were identified.

Recent experimental work by Cunningham and den Boer®
studied the vortical flowfield over a double-delta (strake-delta)
wing configuration. Both flows at fixed angles of attack and
the unsteady flow response resulting from forced oscillatory
motion of the wing surface were investigated. The objectives
of the present numerical study are first to validate and assess
the accuracy of the present algorithm by comparison of the
steady-state solutions with available experimental data and
solutions obtained previously using a different numerical
scheme. The grid resolution required for accurate simulations
of the complex vortical flowfields at high incidences is also
assessed. Finally, a detailed investigation of the leeward-side
flowfield, both at various fixed angles of attack and for several
angles of attack during the oscillation cycle, is performed.
The steady-state and unsteady solutions at the same angle of
attack are compared. Flow phenomena, including interaction
of the strake and wing vortices as the angle of attack is in-
creasing and vortex breakdown, are examined in the com-
puted solutions. The unsteady numerical results are validated
through comparison with available unsteady experimental
measurements.

Computational Method
Governing Equations

The compressible formulation of the thin-layer Navier-Stokes
equations was used to obtain the numerical solution. The
strong conservation-law form of the governing equations for
a curvilinear coordinate system (&, #, {) along the axial, cir-
cumferential, and normal direction, respectively, is as follows:

(1)

here, Q is the dependent variable vector; F, G, H are the
inviscid flux vectors; and § is the viscous term in the normal
direction. These terms are given by
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a is the local speed of sound, and U, V, and W are the con-
travariant velocity components given by U = ué, + v +
wé. + &, etc. In the above equations all geometrical dimen-
sions are normalized with the wing-root chord length; p is the
density normalized with respect to the freestream density
p..;u, v, and w are the Cartesian velocity components normali-
zed with the freestream speed of sound a.; e is the total
energy per unit volume normalized with p.aZ; and Pr is the
Prandtl number. The pressure is related to the density and total
energy through the equation of state for an ideal gas, p =
(y — Dle — p(u® + vz + w?)/2].

Numerical Implementation

The numerical integration of the governing equations is
performed using a factorized, upwind-biased, iterative, im-
plicit numerical scheme. This numerical procedure,' * has
been used with success for the computation of unsteady three-
dimensional flows.'* Implicit time integration is performed
with the following factorized iterative numerical scheme:

[[ + ht(VgAI‘II\ + AEAl;i.k)]l) X [1 + hn(vnBlf/.k
+ AnBi./.k)]’} X [1 + hg(vlcz.’/.k + Agclj/‘lx
Re™'8,M, ;)" x (07% = Q7,1)

J

= A[Q,,A - Q;I/A + h‘(E?H/v/k - Eif—fl/l/.k)
+h(F1/H/"A I/’A)+h(G:/All/’
- Gr_,:A—l/z) Re” lhz(S, ISRV Si:,:A—l/z)] (2)

Here, h, = AT/AE, h, = At/An, and b, = AT/AL A= = (3F/
90). B* = (dF/dQ) and C* = (dG/dQ) are the flux Jacobian
matrices, and M is the viscous flux Jacobian. The quantities
E., V2o F,_,H,M, G, ks 1, and S, ;& + 12 are numerical fluxes.

Time accuracy of the numerical solution is obtained by
performing subiterations to convergence within each time step.
The approximation to Q" *' at each subiteration is the quantity
Q7. During a given level of subiteration to convergence Q”
— @"*', when p = 1 and no subiterations are performed,
thenQOr = Q"and Q@' = Qr+! . Different upwinding schemes
may be used to evaluate the fluxes E,H/Z_M, F, 1.k and
G, . 14 Linearization and factorization errors can be elim-
inated during the iteration process, because the left side of
Egq. (2) can be driven to zero at each time step. A vertex-
based scheme is used, and the numerical fluxes along each
direction are computed in the middle of the corresponding

vertices. A third-order-accurate upwind-biased scheme is used
to evaluate the fluxes. The flux £, e.g., is evaluated as follows:

Euwz‘,.k = l[E(Q//A) + E(Qi+],/,k)]
+ %[AE+(Q:' 1. jks Q:./‘.A) - AE*(Q:‘.,:A» Q:+L/,k)]
+ T]‘[AEi(Q:,/J\" Qiiigu) = AE(Qivjus Qivay)] (3)

the other fluxes, £ and G, are obtained in a similar manner.

The flux differences in Eq. (3) may be computed with dif-
ferent schemes. In the present code the flux differences AE=
are evaluated by Roe’s scheme as AE"(Q, ., O, ,A)
A+( 1+l/2</J\) X (Q1+L/J\ - :/A) - A (Q) X ( R Q/)
Roe’s approximate Riemann solver makes a linear wave de-
composition and uses an average state O defined as a function
of the left and right states Q, and QO to evaluate E*. Roe-
type flux-difference splitting requires explicit evaluation of
the intermediate state Q for the construction of the flux-
difference quantities. The intermediate state Q is calculated
using the Roe variables p = Vp, + Vg i = (u, Vp,
+ u,e\/p«,‘,)/p, etc. Linearization of the flux with Roe’s scheme'*
requires a large computing effort. Therefore, linearization
was performed as in Ref. 11 using the Steger-Warming'® flux
vector splitting, and the resulting linearization error was re-
moved by subiterating to convergence at each time step. Typ-
ically, two to three Newton iterations were sufficient to drop
the residuals two orders of magnitude. The viscous fluxes
S+ are computed using central differences.

The experimental Reynolds number based on the root chord
is Re, = 4.0 x 10°, therefore, it is expected that the flow is
turbulent over most of the wing surface. Transitional flow is
expected to have an effect in regions very close to the leading
edge. Present knowledge about transition does not enable
computation and modeling of the transitional regime. There-
fore, in the computations, the flow was considered to be fully
turbulent. The Baldwin-Lomax eddy viscosity model,'® as
modified by Degani and Schiff'” for the computation of sep-
arated vortical flows, was used throughout.

The strake delta wing configuration used for the numerical
simulation is the same as the one used for the measurements
of Ref. 6. It consists of a sharp leading-edge, 76-deg sweep
strake having a diamond cross section, connected to a 40-deg
sweep wing section formed by NACA 64A005 sections. All
the dimensions of the experimental model are well-defined
and the surface geometry can be defined algebraically. The
surface grid and the dimensions of the wing normalized by
the root chord are shown in Fig. 1a. Most of the solutions are
obtained on a baseline 82 x 63 x 64 point spherical grid. A
sample spherical grid configuration employed for the com-
putations of the double-delta wing is shown in Fig. 1b. The
grid boundaries were placed 2-2.5 root chord lengths away
from the wing surface, and sufficient clustering was used in
the normal direction to enable capturing of the surface viscous
layers. The steady-state solution of the « = 19-deg angle-of-
attack case is computed using a 82 X 117 x 64 point grid
having increased resolution in the circumferential direction.

For the unsteady solutions, a 92 x 88 X 71 point grid is
used. This grid has increased resolution in the leeward side
where 56 out of the 88 circumferential points are located. On
the windward side the resolution is similar to the baseline grid.
The oscillatory motion of the wing is obtained by moving the
grid. At the subsonic inflow boundary the density, normal and
circumferential velocities, and the pressure are specified using
characteristic variables, while the axial velocity is evaluated ex-
plicitly using zero-order Riemann invariant extrapolation. For
the subsonic outflow boundary the pressure is specified, the
streamwise velocity is evaluated using zero-order Riemann in-
variant extrapolation, while the density and the other two ve-
locity components are extrapolated from the interior using first-
order extrapolation. The fluid velocity on the solid surface is
set equal to the prescribed velocity of the body for the unsteady
solution, and zero for the steady-state solutions.
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Fig. 1 Surface geometry and spherical grid over the double delta
wing.

Results and Discussion

The experimental conditions of Ref. 6 were used for the
numerical simulations. The freestream Mach number was
M. = 0.22, and the Reynolds number based on the root chord
length was Re, = 4.0 X 10°. Solutions were obtained for fixed
angles of attack & = 10, 19, and 22.4 deg. All solutions were
computed as fully turbulent using the Baldwin-Lomax eddy
viscosity model'® as modified by Degani and Schiff.'” For the
lower angle-of-attack case, o = 10 deg, the strake and wing
vortices did not merge and no vortex breakdown was devel-
oped. At higher angles of attack (a = 19 and 22.4 deg), the
computed flows, as well as the flow visualization studies of
Ref. 6, showed vortex merging and development of vortex
breakdown. At @ = 19 deg the two vortices merged and vortex
breakdown was found. The flow at « = 22.4 deg also showed
vortex merging and breakdown further upstream above the
wing surface. In the following sections the steady-state flow
regimes where the vortices remain distinct and the flow regime
where the two vortices merge are presented first.

The unsteady solution for the oscillatory motion with «(¢)
= [22.4 + 6.8 sin(wr)]| deg with a reduced frequency of k =
wcl2U, = 0.24 was obtained. The unsteadiness was intro-
duced through rigid body rotation of the grid around an axis
atx/c = 0.75. The space matrices &,, &,, etc., were recalculated
each time step to account for the new grid orientation, and
the unsteady metrics &, 7,, and ¢, were evaluated from the
instantaneous rotation speed & = da(f)/dr of the prescribed
rigid body motion. The unsteady solutions at the peak of the
cycle, and at the mean angle during the pitch-down and pitch-
up motion are compared with available experimental data.
The unsteady solution during pitch-up and pitch-down through
a = 22.4 deg is also compared with the corresponding fixed
angle-of-attack solution in order to demonstrate the effect of
the unsteady motion on the leeward-side vortical flowfield
and vortex breakdown development.

Steady-State Solutions
Flowfields at fixed angles of attack were previously com-
puted'® using a partially upwind second-order accurate nu-
merical scheme. In Ref. 18, upwinding along the streamwise
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Fig. 2 Comparison of the leeward-side surface pressure coefficient
at x/c = a) 0.4 and b) 0.65; M, = 0.22, « = 10.0 deg, Re, = 4.0 X
10¢ (turbulent).

direction was obtained by the Steger-Warming'* flux-vector
splitting, and central differencing was used in the other two
directions. An upwind-biased numerical scheme presented
previously, with inviscid fluxes evaluated by Roe’s method
and third-order accuracy, was used here. It was found that
the upwind-biased scheme can provide solutions having the
same accuracy on sparser grids than the ones obtained using
the numerical scheme of Ref. 18. Grid resolution studies,
where the circumferential resolution was increased, have shown
that higher grid resolution is required for the second-order
central differencing scheme to achieve the same solution qual-
ity. In order to validate the numerical procedure, comparisons
between the solutions obtained with both schemes will be
shown in the following sections. The fully upwind-biased scheme
used here requires larger computing time per time step when
subiterations are used. It was utilized, however, because of
its robustness and the accuracy it provides.

Flow at & = 10.0 Deg

The solution at & = 10 deg was computed on the baseline,
spherical, 82 X 63 X 64 point grid. The computed and mea-
sured surface pressure coefficient® on the strake section (x/c
= 0.4) and the wing section (x/c = 0.65) are compared in
Figs. 2a and 2b, respectively. The surface pressure coefficient
obtained from the solution using the axially upwind scheme
of Ref. 18 is shown for comparison with a dashed line. The
weak suction peak caused by the primary vortex on the strake
section is captured reasonably well by both numerical solu-
tions. On the wing section the strength and the location of
the suction peak caused by the strake vortex that convects
over the wing is also predicted closely by both solutions. The
strength of the suction peak caused by the wing vortex is
predicted closely, and its location is found to be in agreement
with the experiment.® The numerical solution with the present
scheme predicted a slightly better surface pressure distribu-
tion for the wing compared to the solution of Ref. 18. It is
believed that the grid resolution used for the computation of
the flow at o = 10 deg is sufficient, and a grid refinement
study was not performed for this angle of attack. At this angle
of incidence the two vortices remain distinct and little inter-
action can be observed at the strake-wing junction. The strake
vortex follows a straight path at an angle to the leading edge
over the strake section, and the flow is approximately conical.
The leeward-side flow structure obtained with the present
solution is very similar to the one obtained with the solution
of Ref. 18.
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Flow at « = 19.0 Deg

The solution at ¢ = 19 deg was computed on the baseline,
spherical, 82 x 63 x 64 point grid. A solution with a cir-
cumferentially refined 82 x 117 x 64 point grid was also
computed. The computed surface pressure coefficients with
the baseline and the circumferentially refined grids at x/c =
0.4 and x/c = 0.65 are compared with the measurements® in
Figs. 3a and 3b, respectively. The suction peak caused by the
primary vortex on the strake section is slightly underpredicted
by the numerical solution. On the wing section the location
of the suction peak caused by the strake vortex that convects
over the wing, and the primary wing vortex is predicted closely.
The strength of the strake vortex suction peaks are under-
predicted by both the baseline and the refined grid solution.
Grid refinement in the circumferential direction yielded better
predictions only for the wing vortex suction peak.

The computed surface pressure coefficients at x/c = 0.65,
using the present upwind-biased scheme and the partially up-
wind scheme of Ref. 18, for both the baseline grid and the
circumferentially refined grid, are compared in Fig. 4. The
strake vortex suction peak was underpredicted using both
schemes. and grid refinement in the circumferential direction
yielded little improvement. The predictions of the wing vortex
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Fig. 3 Comparison of the leeward-side surface pressure coefficient
at x/c = a) 0.4 and b) 0.65; M, = 0.22, « = 19.0 deg, Re, = 4.0 X
10° (turbulent).
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Fig. 4 Effect of grid resolution and numerical algorithm on the com-
puted leeward-side surface pressure coefficient; x/c = 0.65, M, =
0.22, @ = 19.0 deg, Re. = 4.0 x 10° (turbulent).

suction peak using the partially upwind scheme and the cir-
cumferentially refined grid matched the predictions of the
present scheme with the baseline grid. This indicates that the
higher-order-accuracy, upwind-biased scheme gives equiva-
lent results using smaller grid densities. Therefore, the present
numerical scheme was utilized for the simulation of unsteady
flows.

The computed leeward-side flow structure showed that the
strake and wing vortices remain distinct over most of the wing,
and stronger interaction can be observed compared to the
computed flow at 10-deg angle of attack. At the trailing-edge
region, the two vortices merge and the wing vortex suffers
breakdown. The strake vortex follows an S-shape path. In-
teraction with the wing vortex causes deflection of the strake
vortex path towards the wing surface, and after merging the
strake vortex is swept beneath the wing vortex. The leeward-
side flow structure computed with the present solution is also
in agreement with the numerical predictions of Ref. 18.

Flow at @ = 22.4 Deg

The solution at a = 22.4 deg was computed on the baseline
spherical, 82 x 63 x 64 point grid. The computed and
measured® surface pressure coefficients at x/c = 0.4 and x/c
= 0.65 are compared in Figs. 5a and 5b, respectively. The
predictions of the surface pressure coefficient from the so-
lutions of Ref. 18 with the baseline and the circumferentially
refined grids are also shown. The suction peak caused by the
primary vortex on the strake section is slightly underpredicted
by the numerical solution. On the wing section the location
of the suction peaks caused by the strake vortex that convects
over the wing and the primary wing vortex are predicted
closely. The strength of the strake vortex suction peak is again
underpredicted by the present numerical solution. Lack of
sufficient grid resolution is evident for the solution obtained
with the axially flux-split scheme,'® where the strength of both
suction peaks is underpredicted, and the correct pressure dis-
tribution between the two vortices is not obtained. The so-
lution obtained with the refined grid yielded better predic-
tions, however, even higher resolution is required. For this
case a solution using the present scheme and a grid refined
in the circumferential direction was not obtained.

At this angle of incidence the two vortices remain distinct
over a smaller part of the wing surface compared to the 19-
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Fig. 5 Comparison of the leeward-side surface pressure coefficient
at x/c = a) 0.4 and b) 0.65; M, = 0.22, @ = 22.4 deg, Re, = 4.0 X
10° (turbulent).
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deg angle-of-attack case. Over the wing and close to the trail-
ing-edge region the two vortices merge and the wing vortex
suffers breakdown. The breakdown region has a larger extent
compared to the lower angle-of-attack case, however, signif-
icant flow unsteadiness is not observed in the computations.

Unsteady Flow Solutions

The steady-state solutions show that the baseline grid pro-
vides sufficient resolution to capture the flow physics at low
angles of attack. At higher angles of attack. grids with ad-
ditional resolution would be required for accurate computa-
tion of the complex leeward-side flow characteristics. One
region where finer grid resolution is needed is in the vicinity
of the strake vortex. In the previous section it was shown that
the relative location of the strake vortex changes with the
angle of attack, and covers a relatively large region of the
leeward side. Solutions with grids that are locally refined in
the vortical flow region'’" showed that significant improve-
ments of the predictions of the vortical flowfield may be ob-
tained. High grid densities in the vortex core region yield the
proper strength of the leading-edge vortices, which otherwise
diffuse in the coarser grids usually applied away from the body
surface. The validity of the local grid refinement approach
was investigated for steady-state flows,'”* but its application
to unsteady flows is not straightforward because of the inter-
polation errors at the grid interfaces. In addition, it is not
usually possible to estimate a priori the region where grid
refinement is needed for an unsteady solution. Since the so-
lution with the circumferentially refined grid showed some
improvement, a single block, refined 92 x 88 x 71 point grid
is used for the unsteady solution.

Plunging Motion

The ability of the numerical scheme to compute the un-
steady flow response, and the accuracy of the unsteady so-
lutions was first verified. It is well known that the steady flow
over a wing at an angle of attack « and freestream speed U,
is equivalent to the flow with the wing in plunging motion at
zero angle of attack, constant vertical speed u, = U, sin(a),
and horizontal or freestream speed of U.. cos(a). The three-
dimensional flowfield resuiting from plunging motion of the
double-delta wing, equivalent to a steady flow at o = 10 deg,
was computed on the baseline grid. The converged solution
compared well with the experimental data and the steady-
state solution. Comparison of the surface pressure coefficient
distribution (not shown) indicated very good agreement with
the corresponding fixed angle-of-attack steady-state solution.

Oscillatory Motion

The unsteady flow response resulting from the oscillation
of the double-delta wing about a horizontal axis located at
x/c = 0.75 is computed. The angle of attack varies as a(r) =
[22.4 + 6.8 sin(wt)] deg. The reduced frequency of the os-
cillationis k = wc/2U.,, = 0.24, and M, = (.22. The oscillation
of the experiment® was at a frequency f = 8 Hz. The exper-
imental investigation showed that for this motion the vortices
during the pitch-up initially do not suffer vortex breakdown,
and that vortex breakdown develops at higher angles of attack
compared to the static case. The unsteady solution starts from
a converged steady-state solution for the flowfield at the min-
imum angle of attack « = 15.6 deg during the cycle, and 2.5
cycles of oscillation are completed. Two subiterations are per-
formed and 20,000 time steps are used for the computation
of a full cycle. This number of time steps per cycle corresponds
to a nondimensional time step Ar = 0.003, or a maximum
Courant number Cu =~ 600.

The computed normal force during the oscillation cycle is
compared in Fig. 6 with experimental values. Loads computed
during the second cycle are used for this comparison. The
computed normal force during the first half of the third cycle
is identical to the one shown in Fig. 6. The computed normal

¢ Experiment, Ref.6

| —— Computation

Angle of Attack, deg.

Fig. 6 Computed normal force coefficient; 3, = 0.22, a(f) = [22.4
+ 6.8 sin(w?)] deg, k = 0.24, Re, = 4.0 X 10° (turbulent).
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Fig. 7 Schematic of the oscillation cycle.

force hysteresis loop is in good agreement with the experiment
during the pitch-up part of the cycle. Small deviations from
the experiment are obtained at the peak of the cycle and for
the pitch-down motion, but the experimental trends are re-
produced well.

Further comparisons of the unsteady solutions with the ex-
periment are presented at the angles of attack and phase
angles shown schematically in Fig. 7. The computed surface
pressure coefficients at x/c = 0.65 for different phase angles
of the oscillation cycle are compared with the measurements
in Figs. 8a—8d. The surface pressures comparison at the lower
angle of the oscillation cycle, phase angle ¢ = 0.0 or ¢ =
27, is shown in Fig. 8a. Time periodic response has been
reached and the predictions at both phase angles are identical.
The surface pressure coefficient at the mean angle-of-attack
a = 22.4 deg and phase angle ¢ = 7/2 is compared with the
steady and unsteady data in Fig. 8b. For this phase angle the
pitch rate is a positive, pitch-up case, and the computed un-
steady surface pressure coefficient shows larger values of the
suction peaks and follows the trends of the measurements.
The suction peak due to the strake vortex is underpredicted
as in the steady-state solutions due to lack of grid resolution.
The wing vortex strength and location are predicted reason-
ably well by the unsteady solution. The computed and mea-
sured surface pressure coefficient at a peak angle of incidence
a = 29.2 deg (phase angle ¢ = w) are compared in Fig. 8c.
At this angle of incidence the strake vortex is the strongest
during the oscillatory cycle and suffers breakdown over the
wing. The strake vortex interacts with the wing vortex, and
at x/c = 0.65 the wing vortex is weaker compared to the
strength obtained for lower angles during the oscillatory cycle.
The computed unsteady surface pressure coefficient during
the pitch-down motion at &« = 22.4 deg (phase angle ¢ = 37/
2) is shown in Fig. 8d. The computed wing vortex suction
peak is smaller than the steady flow suction peak, and the
predicted surface pressure follows the trends of the experi-
ment reasonably well.

The vortex structure and the location of strake and wing
vortices are shown with the vorticity magnitude at several
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Fig. 8 Computed and measured surface pressure coefficient at a) «
= 15.6 deg, ¢ = 0 and 2755 b) @ = 22.4 deg, ¢ = w/2;¢) a = 29.2
deg, ¢ = m;and d) & = 15.6 deg, ¢ = 3#/2; M., = 0.22, a(t) =
[22.4 + 6.8 sin(w?)] deg, k = 0.24, Re, = 4.0 X 10° (turbulent).

crossflow planes. The vortex trajectories are shown with par-
ticle traces released from the strake and wing leading edges.
Instantaneous particle traces do not represent accurately un-
steady flowfields. However, particle traces provide an -ap-
proximate location of the vortex trajectory and breakdown
location. The computed leeward-side flow structure at the
minimum angle of attack is shown in Fig. 9a. At this angle
of attack none of the vortices suffers vortex breakdown. Dur-
ing the pitch-up motion vortex breakdown develops first on
the wing vortex. Figure 9b shows the computed leeward-side
flow structure for the mean angle of incidence. During pitch-
up lag of vortex breakdown was obtained and the vortex
breakdown location was found further downstream compared
to the fixed angle-of-attack case. At the maximum angle of
incidence the strake vortex (Fig. 9¢) also suffers vortex break-
down. At the mean angle of incidence during the pitch-down
motion (Fig. 9d) the strake vortex over the wing is re-estab-
lished and vortex breakdown is observed for the wing vortex
only. The vortex breakdown location during pitch-down is

c)

d)

Fig. 9 Leeward-side flow structure shown by vorticity magnitude and
particle traces at @ = a) 15.6, b) 22.4, ¢) 29.2, and d) 15.6 deg; M.,
= 0.22, a(t) = [22.4 + 6.8 sin(w))] deg, k = 0.24, Re, = 4.0 X 10°
(turbulent).

found further upstream compared to the location obtained by
the steady-state solution at the same fixed angle of incidence.

The structure of the leeward-side unsteady flowfield is fur-
ther shown with particles that are released continuously from
several fixed locations at the strake and wing leading edges.
These particles are convected with the local computed veloc-
ity. The particle convection through the oscillatory cycle is
computed with the UFAT code?! using as input the computed,
unsteady flowfields. The trajectories of the convected parti-
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Fig. 10 Leeward-side flow structure shown with convected particles
during the oscillatory cycle at &« = a) 22.4-deg up and b) 29.2 deg;
M. = 0.22, o) = [22.4 + 6.8 sin(ew!)] deg, k = 0.24, Re, = 4.0 X
106 (turbulent).

cles resemble flow realizations obtained from a smoke flow
visualization experiment. Snapshots from an animation of the
convected particles at the mean angle during pitch-up and for
the maximum angle & = 29.2 deg are shown in Figs. 10a and
10b. Comparison of Figs. 10a and 10b with Figs. 9b and 9c,
respectively, shows that convected particles provide a differ-
ent realization of the unsteady flowfield.

Conclusions

An upwind-biased implicit scheme was utilized to investi-
gate steady and unsteady vortical flows at high angles of attack
over a double-delta wing configuration. Steady-state solutions
for fixed angles of attack and unsteady solutions for a sinus-
oidal oscillatory motion were obtained. The steady-state so-
lutions on the baseline grid were in agreement with the ex-
periment, and grid refinement improved the predictions. The
higher-order accuracy of the present scheme yielded equiv-
alent solutions on smaller grid densities compared to solutions
obtained with a second-order accurate method on denser grids.
As the angle of attack increases, the grid resolution require-
ments for adequate resolution of the leeward-side vortical
flowfield become very severe. Local grid refinement or a grid
adaption scheme must be used for more accurate predictions
of the higher angle-of-attack flows. The unsteady solutions
were in agreement with the measurements and showed qual-
itative correlation with the experimental trends. The lags in

OSCILLATING DOUBLE-DELTA WING

surface pressure and vortex breakdown development due to
the unsteady motion have been captured by the unsteady
solution.
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